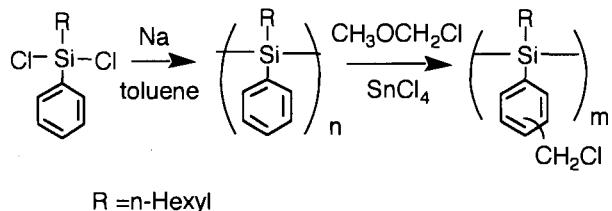


Preparation of Amphiphilic Polysilanes Bearing Chiral Pendant Ammonium Moieties

Daiyo Terunuma,* Koji Nagumo, Norihiko Kamata, Koji Matsuoka, and Hiroyoshi Kuzuhara

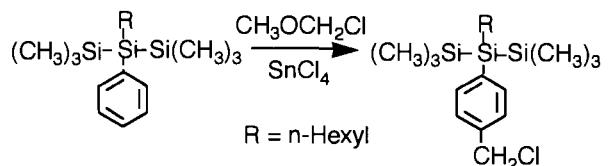
Department of Functional Materials Science, Faculty of Engineering, Saitama University, Shimo-Okubo 255, Urawa, Saitama 338-8570

(Received April 10, 1998; CL-980267)


The synthesis and characterization of new amphiphilic polysilanes containing chiral pendant ammonium groups are described. Chloromethylation of polyhexylphenylsilane (PHPS) was carried out to give p-chloromethylated PHPS (**1**). **1** was treated with optically active N,N-dimethyl- α -methylbenzylamine to give an amphiphilic polysilane. The polymer prepared was soluble in water, ethanol and acetonitrile. The circular dichromic spectrum of the polymer in ethanol showed that the the polymer had a screw-sense main chain.

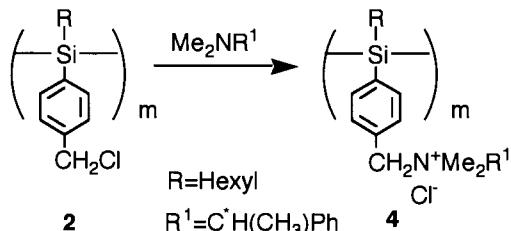
Polysilanes display unique characteristics such as UV absorption and luminescence, due to the σ -conjugation of the Si-Si main chain. It is important to control the conformation of the Si-Si main chain to develop application of the polysilanes for functional materials. Attention has been focused on the preparation and characterization of amphiphilic polysilanes carrying ether,¹ phenol,² and ammonium moieties³ in the side chain, since they are expected to have potential for highly orientated structures of the polysilane main chain. For example, a unimolecular film prepared from the polysilane, which has phenol in the side chain by the Langmuir Blodgett method, showed clear anisotropy in its UV spectra.²

On the other hand, there are few reports on the preparation of polysilanes bearing asymmetric moieties.^{4, 5} Fujiki reported that polysilanes bearing an optically active 2-methylbutyl group on silicon exhibited strong UV absorption and luminescence due to the screw-sense conformation of the main chain.⁴ Most of the functionalized polysilanes, except for the ammonium functionalized one,³ were prepared by the Wurtz reaction using dichlorosilane derivatives bearing optically active groups on silicon. In this method, however, the available asymmetric substituents are strictly limited, because they must be stable under the Wurtz coupling conditions. Introduction of functional groups to a preformed polysilane is another possibility to extend the method for the preparation of functionalized polysilanes.


In the course of our study on the synthesis and characterization of new polysilanes, an amphiphilic polysilane bearing chiral pendant ammonium moieties was investigated for the effects of the chiral moieties on the polysilane main chain.⁶ Poly-n-hexylphenylsilane (**1**),⁷ (Mw 1.5×10^5 , Mw / Mn=2.10, polystyrene standard; UV absorption, λ_{max} 347 nm, ϵ 14400 in CHCl₃), was prepared by the Wurtz reaction under irradiation of supersonic waves in 22% yield. Friedel-Crafts chloromethylation using a tin tetrachloride catalyst was carried out to give the corresponding chloromethylated polysilane (**2**) in 90% yield (Scheme 1). Partial cleavage of the polysilane main chain was observed during the chloromethylation reaction,⁸ and the average molecular weight decreased to 1×10^4 (Mw / Mn=1.65), which corresponds to about 42 silane units.⁹ The ¹HNMR spectrum of **2** showed the chloromethylation was completed, and no cleavage, *ipso*-substitution, was observed

between the Si-Ph bond.¹⁰

Scheme 1.


Because of the broad absorption, however, it was difficult to determine the position of the chloromethyl substituents on the aromatic rings. In order to investigate the positions and selectivities for the chloromethylation reaction, a model compound, 2-hexyl-1,1,1,3,3-hexamethyl-2-phenyltrisilane was chloromethylated in a similar manner to that described above (Scheme 2). The reaction gave only one chloro-methylated product, and its ¹HNMR spectrum¹¹ showed a typical AA'BB' pattern in the aromatic region corresponding to the *p*-substituent, although it was reported that chloro-methylation of trimethylsilylbenzene gave a mixture of *o*-, *m*-, and *p*-isomers.¹² It is understandable that the increased bulkiness of the substituent on silicon of the model compound compared with trimethylsilylbenzene forced the chloromethyl substituent to the *p*-position, selectively. These results let us to the conclusion that the chloromethyl substitution of **2** took place at the *p*-position to silicon.

Scheme 2.

Then **2** was treated with optically active N,N-dimethyl- α -methylbenzylamine (**3**).¹³ A solution of **2** and (+)-**3** in toluene was kept at 80 °C for 12h to give the polysilane bearing optically active ammonium moieties ((+)-**4**) in 88 % yield (Scheme 3). The completion of the quaternization was confirmed by the disappearance of the chloromethyl peak (4.4 ppm) in the ¹HNMR spectrum of the product.¹⁴ Compound **2** was also treated with (-)-**3** and (\pm)-**3** in a similar manner to that described above, to give (-)-**4** and (\pm)-**4**, respectively. The polysilanes obtained were white powders, and soluble in water, ethanol, and acetonitrile.

The UV spectrum of (+)-**4** showed an absorption due to Si-Si σ -bonds in the 320 to 355 nm region (λ_{max} 339 nm, ϵ 6800 in EtOH) (Figure 1). The CD spectrum of (+)-**4** showed negative

Scheme 3.

broad absorption (λ_{ext} 334 nm, $\Delta\epsilon$ -0.72 (Si unit) in EtOH) in a similar region to the UV absorption and positive absorption based on aromatic groups. On the other hand, the CD spectrum of (-)-4 exhibited a symmetrical pattern to that of (+)-4 (λ_{ext} 336 nm, $\Delta\epsilon$ 0.30 (Si unit) in EtOH) (Figure 2). No CD absorption was observed in the spectrum of (\pm)-4. These results suggest that the polysilane main chain of (+)-4 and (-)-4 have opposite one way screw-like conformation, alternately. In addition, it was found that the polysilane (+)-4, prepared from a 50 % chloromethylated 2 and (+)-3, gave nearly the same CD

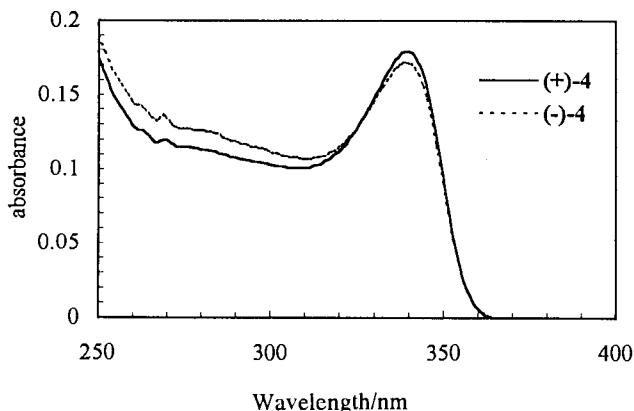


Figure 1. UV spectra of (+)-4 and (-)-4 in 99 % EtOH.

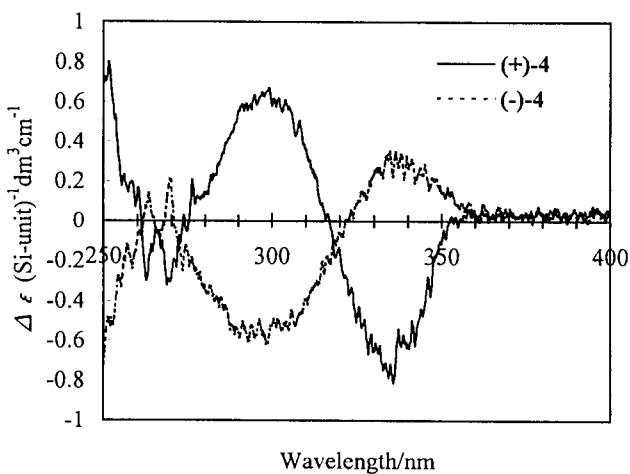


Figure 2. CD spectra of (+)-4 and (-)-4 in 99 % EtOH.

spectrum to that of the completely substituted (+)-4. It means that a half-percent of substituents adequately controls the polysilane main chain.⁴

The authors are grateful to Professor H.Nohira for helpful advice in the preparation of optically pure α -methylbenzylamine. The authors also wish to thank Mr. T.Koyama for measurements of Mass spectra.

References and Notes

- 1 a) Chien-Hua Yuan and R.West, *Macromolecules*, **26**, 2645 (1993). b) O.Greszta and Matyjaszewski, *Macromolecules*, **26**, 6231 (1993). c) Oka, N.Fujiiue, S.Nakanishi, T.Tanaka, T.Dohmaru, Chien-Hua Yuan and R.West, *Chem. Lett.*, **1995**, 875. d) K.Oka, N.Fujiiue, T.Dohmaru, Chien-Hua Yuan and R.West, *J. Am. Chem. Soc.*, **119**, 4074 (1997).
- 2 a) R.Kani, Y.Nakano, Y.Majima, S.Hayase, Chien-Hua Yuan, R.West, I.Keminek, *Macromolecules*, **27**, 1911 (1994). b) R.Horiguchi, Y.Onishi, S.Hayase, *Macromolecules*, **21**, 304 (1988).
- 3 a) I.Kminek, E.Brynda and W.Achnabel, *Eur. Polym. J.*, **27**, 1073 (1991). b) I.Kminek, Y.Yagci and W.Schmabel, *Polym. Bull.*, **29**, 277 (1992). c) T.Seki and T.Tamaki, K.Ueno, *Macromolecules*, **25**, 3825 (1992). d) T.Seki, A.Tohnai, T.Tamaki and K.Ueno, *J. Chem. Soc. Chem. Commun.*, **1993**, 1876. e) T.Seki, T.Tamaki, K.Ueno and Y.Tanaka, *Thin Solid films*, **243**, 625 (1994). f) T.Seki, N.Tanigaki, K.Yase, A.Kaito, T.Tamaki, K.Ueno and Y.Tanaka, *Macromolecules*, **28**, 5609 (1995). g) T.Seki, A.Tohnai, T.Tamaki and A.Kaito, *Chem. Lett.*, **1996**, 361. h) T.Seki, A.Tohnai, T.Tamaki and A.Kaito, *Macromolecules*, **29**, 4813 (1996). i) T.Seki, A.Tohnai, N.Tanigaki, K.Yase, T.Tamaki and A.Kaito, *Macromolecules*, **30**, 1768 (1997).
- 4 a) M.Fujiki, *J. Am. Chem. Soc.*, **116**, 6017 (1994). b) M.Fujiki, *J. Am. Chem. Soc.*, **116**, 11976 (1994). c) M.Fujiki, *Polymer Prepr., Am. Chem. Soc., Div. Polym. Chem.*, **37**, 454 (1996). d) M.Fujiki and H.Takigawa, *Polym. Prepr. Jpn.*, **46**, 3939 (1997).
- 5 K.Shinohara, T.Aoki, T.Kaneko and E.Oikawa, *Chem. Lett.*, **1997**, 361. b) K.Obata, C.Kubota and M.Kira, *J. Am. Chem. Soc.*, **119**, 11345 (1997).
- 6 D.Terunuma, K.Nagumo, K.Matsuoka and H.Kuzuhara, *Int. Symp. Silicon-Based Polymers (Tokyo)*, **1997**, 55
- 7 R.Miller, D.Thompson and R.Sooriyakumaran, *J. Polym. Sci., Part A*, **29**, 813 (1991).
- 8 H.Ban, K.Sukegawa and S.Tagawa, *Macromolecules*, **20**, 1775 (1987).
- 9 Tin tetrachloride (1.0 g, 3.8 mmol) was added to a solution of **1** (1.0 g, 5.3 mmol) in chloroform (10 ml) at 0°C. The mixture was stirred at 0°C for 6 h, and further 12 h at room temperature. After usual work-up, a white powder was obtained in 90% yield.
- 10 ^1H NMR (400MHz, CDCl_3), δ -0.5-1.5 (broad, 13H, C_6H_{13}), 4.4 (broad s, 2H, CH_2Cl), 6.0-7.4 (broad, 4H, Ar), UV absorption; λ_{max} 347 nm, ϵ 12600 (CHCl_3).
- 11 ^1H NMR (400MHz, CDCl_3), δ 0.14 (s, 18H, Si-CH_3), 0.88 (t, 3H, C-CH_3), 0.99-1.03 (m, 2H, Si-CH_2), 1.26-1.39 (m, 8H, CH_2), 4.52 (s, 2H, CH_2Cl), 7.31 (d, 2H, $J=7.9\text{Hz}$, Ar), 7.39 (d, 2H, $J=7.9\text{Hz}$, Ar).
- 12 R.Jones, R.Benfield, A.Swain, S.Webb and M.Went, *Polymer*, **36**, 393 (1995).
- 13 a) H.Nohira, M.Kai, M.Nohira, J.Nishikawa, T.Hoshiko and K.Saigo, *Chem. Lett.*, **1981**, 95. b) R.Lebe and B.Wisegarver, *Org. Synth. Col. Vol. III*, 723.
- 14 ^1H NMR (DMSO-d6, 400MHz): All the absorption were broad. δ 0-1.5 (13H, C_6H_{13}), 1.7-2.2 (3H, NCCCH_3), 2.4-3.2 (6H, N^+CH_3), 4.0-5.0 (2H, N^+CH_2), 5.0-6.0 (1H, N^+CH), 7.081 (9H, Ar).